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Anomalous scaling regimes of a passive scalar advected by the synthetic velocity field

N. V. Antonov
Department of Theoretical Physics, St. Petersburg University, Uljanovskaja 1, St. Petersburg, Petrodvorez, 198904 Russia
(Received 18 September 1998; revised manuscript received 1 Jung 1999

The field theoretic renormalization gro@RG) is applied to the problem of a passive scalar advected by the
Gaussian self-similar velocity field with finite correlation time and in the presence of an imposed linear mean
gradient. The energy spectrum in the inertial range has the Efikhck!™¢, and the correlation time at the
wave numbek scales a& 2" 7. It is shown that, depending on the values of the exponeats 7, the model
in the inertial-convective range exhibits various types of scaling regimes associated with the infrared stable
fixed points of the RG equations: diffusive-type regimes for which the advection can be treated within ordinary
perturbation theory, and three nontrivial convection-type regimes for which the correlation functions exhibit
anomalous scaling behavior. The explicit asymptotic expressions for the structure functions and other corre-
lation functions are obtained; the anomalous exponents, determined by the scaling dimensions of the scalar
gradients, are calculated to the first ordeeiand » in any space dimension. For the first nontrivial regime the
anomalous exponents are the same as in the rapid-change version of the model; for the second they are the
same as in the model with time-independérazen velocity field. In these regimes, the anomalous exponents
are universal in the sense that they depend only on the exponents entering into the velocity correlator. For the
last regime the exponents are nonunivefiay can depend also on the amplitugémwever, the nonuniver-
sality can reveal itself only in the second order of the RG expansion. A brief discussion of the passive
advection in the non-Gaussian velocity field governed by the nonlinear stochastic Navier-Stokes equation is
also given[S1063-651X99)15311-X]

PACS numbds): 47.10+4g, 47.27.Eq, 05.16:a

[. INTRODUCTION Of course, the Gaussian character, isotropy, and time
decorrelation are strong departures from the statistical prop-
The investigation of intermittency and anomalous scalingerties of genuine turbulence. One step toward the construc-
in fully developed turbulence remains one of the major thetion of a more realistic model of passive advection is the
oretical problems. Both the natural and numerical experiaccount of the finite correlation time of the velocity field.
ments suggest that the deviation from the predictions of the In [34,35, a generalized phenomenological model was
classical Kolmogorov-Obukhov theory is even more stronglyconsidered in which the temporal correlation of the advect-
pronounced for a passively advected scalar field than for thing field was set by eddy turnovésee also an earlier work
velocity field itself; see, e.g.[1-6] and literature cited [36], where the probability distribution function in an analo-
therein. At the same time, the problem of passive advectiogous model was studigdit was argued that the anomalous
appears to be easier tractable theoretically: even simplifiedxponents may depend on more details of the velocity statis-
models describing the advection by a “synthetic” velocity tics, than only the exponents. This idea has received some
field with prescribed Gaussian statistics reproduce many cdinalytical support if37], where the case of short but finite
the anomalous features of genuine turbulent heat or massrrelation time was considered for the special case of a local
transport observed in experiments, §8e38|. Therefore, the turnover exponent. The anomalous exponents were calcu-
problem of a passive scalar advection, being of practical imfated within the perturbation theory with respect to the small
portance in itself, may also be viewed as a starting point ircorrelation time, with Kraichnan’s rapid-change model taken
studying anomalous scaling in the turbulence on the wholeas the zeroth order approximation. The exponents obtained in
Recently, a great deal of attention has been drawn by E37] appear to be nonuniversal, through the dependence on
simple model of the passive scalar advection by a selfthe correlation time. The exact inequalities obtained38|
similar Gaussian white-in-time velocity field, the so-called using the so-called refined similarity relations also point up
“rapid-change model,” introduced by KraichndiQ]; see some significant differences between the zero and finite
[8—30] and references therein. For the first time, the anomaeorrelation-time problems.
lous exponents have been calculated on the basis of a micro- In Ref. [32], the field theoretic renormalization group
scopic model and within regular expansions in formal small(RG) and operator product expansi@@PE were applied to
parameters. Within the “zero-mode approach” to the rapid-the model[10]. The feature specific to the theory of turbu-
change model, developed ji4—17, nontrivial anomalous lence is the existence in the corresponding field theoretical
exponents are related to the zero moffesmogeneous solu- models of the composite operators wittegative scaling
tions) of the closed exact equations satisfied by the equal¢“critical” ) dimensions. Such operators are termed “danger-
time correlations. In this sense, the model is “exactly solv-ous,” because their contributions to the OPE for the struc-
able.” The anomalous exponents are universal, i.e., theyure functions and various pair correlators give rise to the
depend only on the space dimension and the exponent entexnomalous scaling, i.e., singular dependence on the IR scale
ing into the velocity correlator. with nonlinear anomalous exponents. The latter are deter-
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mined by the critical dimensions of these operators. Thavhere R [in the momentum representatid®=R(k)] is a
OPE and the concept of dangerous operators in the stochastioear operation to be specified below afidis an external
hydrodynamics were introduced and investigated in detail irandom stirring force with zero mean and the correlator
[39,40; see alsd41] and[42].

For the rapid-change model, the relationship between the (F,00 (X)) = f %J dk P (KD (w.k)
anomalous exponents and dimensions of composite operators ! J 27 ) (2md '
was anticipated ifi15,17,38 within certain phenomenologi- ] )
cal formulation of the OPE, the so-called “additive fusion xexg —i(t—=t)+ik-(x=x")]. (1.3
rules,” typical to the models with multifractal behavior; see
also[43,44]. The RG analysis of Ref32] shows that such
fusion rules are indeed obeyed by the powers of the loc
dissipation rate in the modgl0], and all these operators are

Here Pij(k)=5ij—kik]-/k2 is the transverse projectok
a]=—|k| is the wave number, andlis the dimensionality of the
X space. Followind3], we choose the correlat®’ to be
independent of the frequency, so that Eg3) contains thed

dangerous. function in time. More specific, we choose
The part of the formal expansion parameter in the RG ’ P ’
approach is played by the exponeghentering into the ve- D(w k)=govgo‘k"d’8”’ R(k)ZUoVotfiﬂ’ (1.4)

locity correlator; see Eq1.9) in Sec. Il (in Ref.[32], it was
denoted bye, in order to emphasize the analogy with Wil- \where
son’s ¢ expansiop The anomalous exponents were calcu-
lated in[32] to the orderZ? of the expansion ir’ for any o =K+ m?. (1.5
space dimension, and they are in agreement with the first-
order results obtained within the zero-mode approach iffhe positive amplitude factorg, (a formal small parameter
[14-17. In[33], the RG method was generalized to the casedf the ordinary perturbation thegrgndu, are the analogs of
of a nonsolenoida(l“compressible”) velocity field. the coupling constant‘charge”) \, in the standarc o¢*
The main advantage of the RG approdelpart from its model of critical behavior, see, e.§45,46; in what follows
calculational efficiencyis the universality: it is not related to we shall also term these parameters “coupling constants.
the aforementioned solvability of the rapid-change modellThe exponentg and 7 are the analogs of the RG expansion
and can equally be applied to the case of finite correlatiopparametee =4—d in the \y¢* model, and we shall use the
time, provided the corresponding model possesses the R@aditional term ‘e expansion” in our model for the double
symmetry. In[32], the results were presented for the oppo-expansion in the— 7 plane around the origia=7=0, with
site limiting case of the time-independetifrozen” ) veloc-  the additional convention that=0(7). The infrared(IR)
ity field. regularization is provided by the integral scdle=1/m; its
In this paper, we apply the RG and OPE technique to thgrecise form is not essential. Fee>m the functions(1.4)
problem of a passive scalar field advected by a self-similatake on simple powerlike form. Dimensionality consider-
synthetic Gaussian velocity field with finite correlation time; ations show that the charges are related to the characteristic
the steady state is maintained by an imposed linear meamitraviolet (UV) momentum scalé\ by
gradient. The velocity field satisfies a linear stochastic equa- N
tion with effective viscosity and stirring force. The model Go=A""7, Ug=A". (1.6
was proposed and studied in detaiking numerical simula-
tions, in two dimensionsin [3]; its rapid-change version is
discussed if18,20,24,28 We consider the problem in an
arbitrary space dimensiod=2; we also stress that the cor-

From Egs. (1.2 and (1.3) it follows that v(x) obeys
Gaussian distribution with zero mean and correlgtiyrop-
ping the transverse projecjor

relation time is not supposed to be small. We establish the D(k) gordol -4 e 7
existence in the inertial-convective range of several different Dy(w,K)=—5—5—= 20 07k - (L7
scaling regimes and show that for some of them the structure @*+RY(K) o +[ugrooi 7]

functions and other correlation functions of the problem ex- . N
hibit anomalous scaling behavior; we derive explicit analyti—Therefore' the expone@tde_scrlbes the mertlal-rgnge behav-
cal expressions for the corresponding anomalous exponent@.r of the equal-time velocity correlator or, equivalently, the
The advection of a passive scalar field in the presence di"€"9% spectrum
an imposed linear gradient is described by the equation
E(k):kdflf dwD,(w,k)=(gevd/ug)kt ™2, (1.9
V.0=vy°60—h-v, V=d,+Vd. (1.0
cf. [7-9], where a close family of models for the velocity
Here, 6(x)= 6(t,x) is the random(fluctuatiorn) part of the field has been considered for a strongly anisotropic shear
total scalar field® (x)=6(x)+h-x, h is a constant vector flow. The second exponent;, is related to the function
that determines distinguished directian, is the molecular  R(k), the reciprocal of the correlation time at the wave num-
diffusivity coefficient, g,=dlat, d;=0aldx;, 9*=3;0; is the  berk (»p=2—z in the notation of 7—9,37,38, our exponents
Laplace operator, ang(x) ={v;(x)} is the transverseowing  are defined so that=7=0 correspond to the starting point
to the incompressibilityvelocity field. of the RG expansion It then follows thate=8/3 gives
The velocity obeys the linear stochastic equation[8f.  the Kolmogorow “five-thirds law” for the spatial velocity
statistics, andp=4/3 corresponds to the Kolmogorov fre-
dVvi+Rvi="1;, (1.2 quency.
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It was pointed out i3] that the linear moddll.2) suffers  sidered(However, the exponents in our model turn out to be
from the lack of Galilean invariance and therefore does notiniversal in the one-loop approximatijon
take into account the self-advection of turbulent eddies. Itis (iv) The diffusive-type regimes, for which the advection
well known that the different-time correlations of the Eule-[j.e., the nonlinearity in Eq(1.1)] can be treated within the
rian velocity field are not self-similar, as a result of theSEOrdinary perturbation theory. These regimes take place in
“sweeping effects,” and depend substantially on the integrakhe region specified by the inequalities>0,7>¢ and
scale; see, e.g[47]. Nevertheless, the results (8] show 7<0,e<O0.
that the model gives reasonable description of the passive 14 ayoid possible misunderstandings we emphasize that
advection in an appropriate frame, where the mean velocCity, o |imits 9o, Up—0 OF go, Up—o are not supposed to be

field vanishes. To justify the modél.2), we also note that rS)erformed in the original correlation functiqd.7); the pa-

we shall be mte_zr_ested preferably n the equal-tl_me, Galilea ametergy, Ug are fixed at some finite values. The behavior
invariant quantitieqstructure functions, correlations of the . . . .
specific to the model§1.9), (1.10 arises asymptotically in

dissipation rate etg. which are not affected by the sweepmgéPe regime(i) and (i) as a result of the solution of the RG

effects, and we expect that their absence from the mod ;
b equations, when the “RG flow” approaches the correspond-

(1.2) is not essential. ) . . ) o .
We also note that the model contains two special caseldd fixed point. Therefore, we deal with the finite correlation

that possess some interest on their own. In the limgjt tMe, and there is no problem with the steady state in the
oo, g(’)zgolu§=const we arrive at the rapid-change frgzen case even in .two_ dlmen5|ons. The regions of IR sta-
model: bility of the regimes(i)—(iv) in the e-n plane, given above,
are identified to the first order of theexpansion, but some
Dy(w,k)—ggro(k2+m?) 92782 r=¢—5 (1.9  of their boundaries are found exactly.

In the regimes(i)—(iii ), the correlation functions of the
and the limituy—0, gg=go/uo=const corresponds to the model exhibit anomalous scaling behavior, i.e., singular de-
case of a frozen velocity field: pendence on the IR scafe with nonlinear “anomalous ex-

y 2 _ e ponents.” Within the RG and OPE approach, the latter are
Dy(@,k)—ggro(k?+m?) "9 2n5(w), (1.10 related to the scaling dimensions of the tensor composite

when the velocity correlator is independent of the time vari-OPeratorsi6---¢; these dimensions are calculated explicitly
ablet—t’ in the t representation. The latter case for0  to the first order of the expansior(one-loop approximation
has a close formal resemblance with the well-known modeld? Sec. V. The inertial-convective-range asymptotic expres-
of the random walks in random environment with long-rangesions for the structure functions of arbitrary ordeven and
correlations; se@48,49. odd and the equal-time correlations of the scalar gradients
In Sec. I, we give the field theoretic formulation of the are obtained in Sec. VI using the OPE.
problem and discuss some its consequences; we also explain As the exponentg and 7 increase, the powers of the
briefly why the ordinary perturbation theory fails to give velocity field also become dangerous, and their contributions
correct IR behavior for some values ©fnd » and establish  to the OPE should be summed. The required summation is
the relationship between the IR and UV problems. In Secperformed in Sec. VII on the example of the second-order
lll, we discuss the UV renormalization of the model, derive structure function in the “frozen” regime; for the rapid-
the RG equations, and present the one-loop expressions fehange regime the problem is absent. This summation might
the basic RG functiongg functions and anomalous dimen- pe interesting as a possible model of the origin of the anoma-
siony. In Sec. 1V, the analysis of the scaling behavior is|oys scaling in the structure functions of the velocity itself: it
given. Depending on the values of the exponentsnd 7  was argued if50] that the singulam dependence of the
entering into the velocity correlator, the model exhibits Vari'equal-time correlators for the stochastic Navier-Stof¢S)
ous types of IR scaling regimes, associated with the IR stablgquation is related to infinite families of dangerous operators.
fixed points of the RG equations. The results obtained are reviewed in Sec. VIII, where we
(i) The anomalous scaling behavior with univeralthe  31s0 discuss briefly the passive advection by the non-
above sengeexponents, characteristic of the rapid-changegaussian velocity field governed by the nonlinear stochastic
model, takes place fop<e<2z. The anomalous exponents NS equation. Our approach is generalized directly to this
depend on the only exponetitentering into Eq(1.9). case, and the explicit expressions for the anomalous expo-
(it) The anomalous scaling behavior with the universalnents can readily be obtained in the first order of the corre-
exponentS, CharaCteriStiC of the m0de| W|th time'independergpondings expansion_ We a|so discuss new prob'ems that

(frozen velocity field, emerges in the regiosn>0,e>2%.  grise in the NS model beyond tleeexpansion.
The exponents are determined solely by the equal-time ve-

locity correlator and depend on the only exponemintering
into Eq. (1.10.

(i) The intermediate regime with nonuniversal expo-
nents, which depend on the amplitudes entering into the ve-
locity correlator, emerges fot=27; the Kolmogorov-type
synthetic velocity field 3] and the case of a local turnover  According to the general theorensee, e.g., Refs.
exponen{37] correspond to this regime. The nonuniversality [45,46]), the stochastic problerfl.1)—(1.3) is equivalent to
of the exponents in this regime is in agreement with thethe field theoretic model of the doubled set of fields
findings of Ref.[37], where the largel limit has been con- ®={6,6',v,v'} with action functional

Il. FIELD THEORETIC FORMULATION OF THE MODEL.
IR AND UV SINGULARITIES IN PERTURBATION
THEORY
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S(®)=(1/2v'DV' +Vv'[ - dv—Rv] only in the numerators. It then follows that the Green func-

) 5 tions with n—p<0 vanish identically. On the contrary, the
+0'[— 00— (Vd) 0+ ve°6—h-v]. (21D  1-jrreducible function

HereD' is the correlqto(1.4), the required .int('agrat'ions over (0(Xq) =+ 0(Xn) 0" (Y1) =~ 0" (Yp))1ir
x=(t,x) and summations over the vector indices in Eql)
and analogous formulas below are implied. contains a factor ohP™" and therefore vanishes for—p

The formulation(2.1) means that statistical averages of >0; this fact will be relevant in the analysis of the renor-
random quantities in the stochastic probléml)—(1.3) co-  malizability of the modelsee below.
incide with functional averages with the weight egpd), Another important consequence of the representation
so that generating functionals of tofab(A)] and connected (2.2),(2.4) is that the large-scale anisotropy persists, through
[W(A)] Green functions are represented by the functionathe dependence dm, for all ranges of momenténcluding
integral convective and dissipative rangeand that the dimension-
less ratios of the structure functions are strictly independent
on h; cf. [3-5,34-36. It is noteworthy that all these state-
ments equally hold for any statistics of the velocity fiéhdt
necessarily Gaussian or synthgtiprovided its distribution

G(A)=expW(A)=J DO exd S(P)+ADP] (2.2

with arbitrary source#\(x) in the linear form is independent oh.
However, the ordinary perturbation theory fails to give
Aq)Ef dxTAYX) 0(x) +A? (x) 8" (X correct IR behavior of Green functions for some values of
LA%(x) 600 (x)6"(x) the exponentg and #. This can easily be illustrated on the
v V' , simplest example of the 1-irreducible Green function
ATV (X) AT (X)Vi(X)]. (2.3 (9'6),_, . It satisfies the Dyson equation of the form
In the following, we shall not be interested in the Green (6'0)1_ir=—1w+vok?—3 4 o(w,K), 2.7

functions involving the auxiliary vector field’, so that we
can setA’ =0 in Eq.(2.3. It is then convenient to perform Where X, is the self-energy operator represented by the
the Gaussian integration ovef in Eq. (2.2) explicitly. We  corresponding l-irreducible diagrams. Its one-loop approxi-
arrive at the field theoretic model of the reduced set of fieldgnation has the form

d={6,0' v} with the action

oo,
-

29:9 = e (2.8
a7 _ 20_h.vl— -1
S(P)= 0= 0= (vd) 6+ voi"0=h-v] =D, v/2(.2 2 Here and below the solid lines in the diagrams denote the
' bare propagatof66’), from Eq. (2.6), the end with a slash
The first four terms in Eq(2.4) represent the Martin-Siggia- corresponds to the field, and the end without a slash cor-

Rose—type action for the stochastic probléin) at fixedv, ~ responds tof; the dashed lines denote the bare propagator
and the last term represents the Gaussian averagingvover(1.7); the vertices correspond to the fact@r5). The analytic

with the correlatoD,, from Eq. (1.7). expression for the diagram i2.8) has the form
The mlodel(2.4)'corresponds to a standard Feynman dia- do’
grammatic 'Fechnlque with the triple vertex 6'(vd)0 S o(w,K)= —k-ij’ _
=0'V,v;0 with vertex factor 2m
Vi=ik;, (2.5 « dq Pij(d)Dy(w’,q)
2m? —i(w+ ')+ vo(q+k)?’

wherek is the momentum flowing into the vertex via the
field ¢, and the bare propagatorésn the momentum-
frequency representatipn

(2.9

whereq=|q| andD(w’,q) is given by Eq.(1.7); the factor
of kik; arises from the vertex factofg.5). Integration over

N P NK — (i 2y—1
(00")0=(0"0)5=(—Tw+ vk’ 4, ' in Eq. (2.9 yields

(06)0=(66")ohihj(vivj)o(6' O)o, dov
, (2.6) Eg/g(w,k):_kikjw
(0Vi)o=—(66")ohj(V;Vi)o, 0
- q P, (q)o2 9"¢
(6/6)0=0, XJ qd . ijlq q2 —
(2m)® —iw+vo(q+k)2+ugroo? 7
whereh; is a component of the vectbrand the bare propa- (2.10

gator(v;vj)o is given by Eq.(1.7).

The magnitudeh=|h| can be eliminated from the action =~ We are interested in the IR behavior of the function
(2.4 by rescaling of the scalar fieldi—ha, 8’ — 6’ /h. (2.10, i.e., the behavior of smal, w andm. It is easily seen
Therefore, any total or connected Green function of the fornthat this behavior is nontrivial in the region on they plane,
(0(xq) -+ 0(x,) 0" (yq) -+~ 0'(yp)) contains the factor of determined by the inequalitieg<0,e>0 and%>0,s>7, be-
h"~P. The parameteh appears in the bare propagat¢2ss)  cause the integral if2.10 is then IR divergent ik,  andm
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are simply set equal to zero. On the contrary, for the rest of TABLE I. Canonical dimensions of the fields and parameters in
the e-n plane, the leading term of the desired asymptoticthe model(2.10.

behavior is indeed obtained simply by settikg w=m=0.
The analysis is extended directly to the higher-order diaF 0 o v vy muA gy Uy g.uh
grams; it shows that these IR singularities enhance as t

. . -1 d+1 -1 -2 1 + 0

order of a diagram increases, and that they take place onlgfu 0 0 1 1 0 ¢ 077 "0 0
o . : L e

within the same region on the 7 plane. The IR singularities de -1 d+1 1 0 1 R 0

compensate the smallness of the coupling congjgntas-
sumed within the framework of the ordinary perturbation
theory. Therefore, in order to find correct IR behavior we
would have to sum the entire series even if the expansio
parameterg,, were small.

It is also clear that these IR singularities get weaker as the
parameterse,n decrease, and they would disappear at
e=n=0 if we could take this limit in Eq(2.10. However, , ) ,
this is impossible owing to the UV divergence in the integral €€ A>0 is an arbitrary transformation parameter, and
(2.10 at this point. In general, the diagrams®f, , are UV~ WO mt_depeI(ndent canonical dimensions, the momentum
divergent in the region;>0,e<0 and 7<0,e<7, and the dimensiondg and the frequency dimensiatf , are assigned
UV cutoff atq=|q|=A is then implied in(2.10 and higher- [0 €ach quantity~ (a field or a parameter in the action
order diagrams. If the poiné=7=0 is approached from functiona). These canonlc_a( engineering _)_ d|me_.\n3|on_s
inside the region of UV convergence, the UV singularitiesSh°U|d not be confused with the exact critical dimensions:

manifest themselves as poles&dny and their linear combi- the latter are subject to nontrivial calculation, while the
nations. The elimination of these poles is the classical UVOrMer are simply determined from the natural normalization
. . . . — — w_ Jo__ _ _ w_ _ o
problem, and its solution is given by the standard theory ofonditions  dy=—d,=1,dy’=d;’=0,d,=d;=0,d;=—d;"
UV renormalization; the RG equations are obtained within=1, and from the requirement that each term of the action
the framework Of th|s theory and express the Simp|e idea ofunctional be dimensionlei-se., be invariant with reSpeCt to
nonuniqueness of the renormalization procedure. The corrdhe transformation$3.1) and (3.2) separately Then, based
lation between the IR and UV singularities near the “loga-on dr anddg, one can introduce the total canonical dimen-
rithmic point” e=7=0, noted above, explains to some ex- sion [41,42,53, which corresponds to the dilatation with
tent why the RG method, which is closely related to the UVfixed value ofy, (i.e., zero canonical dimension can be as-
divergences, can be a useful tool in studying the IR behaviogigned tovg). In our model,d,% vy9?, so that the total di-
and why the exponents and » are expected to be relevant mension is given bde=d‘;+2d‘£.
small parameters in the RG expansions. In the action(2.4), there are fewer terms than fields and
Surprisingly, simple arguments given above lead to reaparameters, and the canonical dimensions are not determined
sonable conclusions: the rigorous RG analysis confirms thatnambiguously. This is of course a manifestation of the fact
the Green functions of the model indeed show anomalous IRhat the “superfluous” parametér=|h| can be eliminated
behavior for some values ef and 7, and the region deter- from the action; see above. After it has been elimindtad
mined by the inequalitie;<0,6>0 and »>0,e># coin-  equivalently, zero canonical dimensions have been assigned
cides with the region of stability of the corresponding fixedto it), the definite canonical dimensions can be assigned to
points in the linear approximation; see Secs. lll and IV.  the other quantities. They are given in Table I, including the
dimensions of renormalized parameters, which will appear
later on.
lll. UV RENORMALIZATION OF THE MODEL. From Table | it follows that the model is logarithm(the
RG FUNCTIONS AND RG EQUATIONS both coupling constantg, and uy, are dimensionlegsat ¢

The renormalization of the modé2.4) is similar to the ~=7=0. This means that the UV divergences in the Green
renormalization of the simpler rapid-change model, considfunctions have the form of the poles i 7, and all their
ered in detail if{32]; below we confine ourselves to only the POSSible linear combinations.
necessary information. The total dimensiordg plays in the theory of renormal-

The analysis of UV divergences is based on the analysigation of dynamical models the same role as does the con-
of canonical dimensions, s¢é6,51. Dynamical models of ~Ventional(momentun dimension in static problems. The ca-
[41,42,53, ie., the action functional2.4) is invariant functionI'=(® ---®),_;, are given by the relations
with respect to the two independent scale transfor-

and in the second the space variable is fixed and all the other
auantities are dilated:

D(t,x) =D (t,x)=NBD(\L,X), z—Z =A%z. (3.2

mations, S(®',z/)=S(®,z), where ®={6,6',v} and z df=d=Ngd§, dp=1-Ngdg,
={do,Ug, v, m} is the full set of the model parameters. In 3.3
the first transformation, the time variable is fixed and the dr=d¥+2d‘r"=d+2—N¢d¢,

space variable is dilated along with all the fields and param-

eters: whereNg={N,,N, ,N,} are the numbers of corresponding

fields entering into the functiol, and the summation over
) o L all types of the fields is implied. The total dimensidp is
Q(t,x)—=®'(t,x)=ND(t,AX), z—7z =Nz, (3.1  the formal index of the UV divergence. Superficial UV di-
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vergences, whose removal requires counterterms, can be The relation S(®,e) =S (P,e,1) (Where ey is the

present only in those functions for which dr is a non-
negative integer.
Analysis of divergences in the proble(@.4) should be

complete set of bare parameters, aris the set of renormal-
ized parametejsfor the generating functionaN(A) in Eq.

(2.2) yields W(A,ep) =W,e(A,€, ). We useD to denote

based on the following auxiliary considerations; cf. the differential operationud, for fixed e, and operate on

[32,41,42:
(1) All the 1-irreducible Green functions withl <N,
vanish; see Sec. Il.

(2) If for some reason a number of external momenta
occur as an overall factor in all the diagrams of a given

Green function, the real index of divergendg is smaller

both sides of this equation with it. This gives the basic RG
differential equation:

DRGWren(Avea,U«):Oa (38)

than d- by the corresponding numbéthe Green function WhereDgg is the operatiorD,, expressed in the renormal-

requires counterterms only @} is a non-negative integer
In the model(2.4), the derivatived at the vertexd' (vd)o

can be moved onto the fiel@l by virtue of the transversality
of the fieldv. Therefore, in any 1-irreducible diagram it is

ized variables:

DRGED/L+Bg(giu)ag+ﬁu(g!u)au_ ‘}/v(g’u)DV'
3.9

always possible to move the derivative onto any of the ex-
ternal “tails” 6 or #', which decreases the real index of | Eq.(3.9), we have writterD, = x4, for any variablex, and

divergence:dr=dr—N,—N, . This also means that the the RG functiongthe 3 functions and the anomalous dimen-
fields 6,6’ enter into the counterterms only in the form of the sion y) are defined as

derivativesdd and 96'.

From the dimensions in Table | we fidf=d+2—N,
+Ny—(d+1)N, and dr=(d+2)(1-Ny)—N,. From
these expressions it follows that for adysuperficial diver-

gences can exist only in the 1-irreducible functions

(6"6---6),_;, with N,=1 and arbitrary value oN,, for

which dr=1+N,, d;.=0. However, all the functions with
Ny>N, vanish (see aboveand obviously do not require

=D,Inz,, (3.10a
By=D,9=9[—e—n+37,], (3.100
Bu=D,u=ul—n+7,]. (3.100

counterterms. As in the case of the rapid-change model . _
[32,33, we are left with the only superficially divergent The relations betwees and y in Eq. (3.10 result from the
function (6’ #), ;, ; the corresponding counterterm contains definitions and the relatiof8.5).

two symbolsd and is therefore reduced # 926. The inclu-

Now let us turn to the explicit calculation of the constant

sion of this counterterm is reproduced by the multiplicativeZ, in the one-loop approximation in the MS scheme. The

renormalization of the parameteyg, uy, andvg in the ac-
tion functional(2.4):

vo=vZ,, Qo=9u°""Zy, Ug=up’Z,, (3.4

where the dimensionless parametgrg, andv are the renor-
malized analogs of the bare parametetss the renormal-
ization mass in the minimal subtractio®S) scheme, which
we always use in practical calculations, af\& Z;(g,u) are
the renormalization constants. They satisfy the identities

2,=2,% 2,=2,%, (3.5

v o

constantZ, is determined by the requirement that the
1-irreducible Green functiog6’ 6),_;,, when expressed in
renormalized variables, be UV finifee., have no singulari-
ties fore, 7—0]. The Dyson equatiof2.7) relates this func-
tion to the self-energy operatai, ,, and Eq.(2.10 gives
the explicit expression for the latter in the first ordefg)

of the unrenormalized perturbation theory. Now we have to
calculate the functior® 4 , in the orderO(g) of the renor-
malized perturbation theory; therefore we should simply re-
placevy— v in the propagato(66’), and use the expression
(3.7) for the velocity correlator in Eq(2.8), which leads to
the substitutiorgo—gu®* 7, ug—uu”, vo— v in Eqgs.(2.9)
and(2.10. We know that the divergent part of the diagram is

which result from the absence of the renormalization of thdndependent ob, so that we can set=0 in what follows. It

contribution withD,, in the functional2.4). No renormaliza-
tion of the fields, the “mass’i, and the vectoh is required,
ie.,Zy=1 for all ® andZ,,=2Z,=1.

The renormalized action functional has the form

Sied ®)=0'[ — 3,0— (vd) 0+ vZ,3*6—h-v]—VvD, *v/2,
(3.6

where the correlatdD,, is expressed in renormalized param-

eters using the formula8.4):

a+770_4 d—e—17n

D,(w,k)=

gV
- 2— 77]2 (37)

1) +[UV,u”a'k

is also convenient to cut off the integral ouefrom below at
g=m and setm=0 in the integrandthe integral diverges
logarithmically, and its UV divergent part is independent of
the specific form of the IR regularizatinnFurthermore, we
can sek=0 in the integrandwe know that the counterterm
is proportional tok?, and the factor ok? has already been
isolated from the integraland make use of the isotropy,
namely,

d-1
| dat@py@=a,"5 [ data.

Then Eq.(2.10 yields
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grpf(d—1)J ag— (—u)s
S g o(0=0K)=—K*—F——, 3.1 - b
o @=0K) 5ud (3.13 v =[(et Dyt 7D 3
where we have written _ag - s ag
S SZO( u) Tu(l+u)’ (3.17
dg g . .
J= 7m0 T ()" (3.12 up to the corrections of orde® and higher. The beta func-
(2m) mig tions are obtained from E@3.17) using the relation$3.10b
and(3.100.
and = denotes the equality up to the UV finite parts. The
expansion of the integrand ingives IV. FIXED POINTS AND SCALING REGIMES
% d It is well known that possible scaling regimes of a renor-
J= (_u)sﬂsvyf_qdqfdfrm malizable model are associated with the IR stable fixed
=} (2m) points of the corresponding RG equations, see, B4§,46.

The fixed points are determined from the requirement that all

- Su > (- )s'“S” Y (3.13 the beta functions of the model vanish. In our model the
(2m9&h et+sy ' ' coordinatesy, , u, of the fixed points are found from the
equations
where the parameten arises from the IR limit in the integral _ _
overq and S;=27%%T(d/2) is the surface area of the unit Byl G5 1Us) = Bul s 1Ux) =0 “.
sphere ind-dimensional space. _ with the g8 functions given in Eqs(3.10bH and(3.109. The
Finally, from Egs.(3.11) and(3.13 we obtain type of the fixed point is determined by the eigenvalues of
the matrix Q={Q;,=dB;/dg;}, where B; denotes the full
—agrk? & (—u)S(u/m)ets? set of theg functions andy; is the full set of charges. For the
2 g g(@=0K)= J > e , (3149  standardas in Eq.(1.6)] formulation of the problem the IR
=0 7 asymptotic behavior is governed by the IR stable fixed
. points, i.e., those for which all the eigenvalues are positive.
where we have written From the equationé3.10b and(3.109 we obtain the ex-
act relationy/g—3B,/u=2n—e¢. It shows that the func-
(d—1)Sy tions By, B, cannot vanish simultaneously for finite values
a= W’ (3.19 of their arguments[The only exception is the casej2e.

We shalll study it separately, and for now we assumée 2]
Therefore, to find the fixed points we must set eitherO or
u=c and simultaneously rescalg so that the anomalous
dimensiony, remain finite.

In order to study the limiu—c we change to the new
variablesw=1/u, g’ =g/u?; the correspondingd functions
have the form

The renormalization constamnt, is found from the re-
quirement that the UV divergences cancel out in Ej7)
after the substitution,=vZ,. This determine&, up to an
UV finite contribution; the latter is fixed by the choice of the
renormalization scheme. In the MS scheme all the renorma
ization constants have the form *only poles ing,n» and

their linear combinations,” which gives the following ex- EWE@#WZ—,@u/UZ:W[U—%],

pression
. By=D,9'=By/u’=29B, /=g [n=e+7,]), (4.2
v T ?Fo i+:),7 (316  and for the one-loop anomalous dimension we obtain from
Eq.(3.17)
with the coefficienta from Eq. (3.15. y,=ag'/(1+w) (4.3

In contrast to the rapid-change model, the one-loop ap-
proximation in the case at hand is not exact: the expressiowith the constant defined in Eq.(3.15. From the expres-
(3.16 has nontrivial corrections of ordey?, g%, and so on. sions(4.2) we find two fixed points, which we denote FPI
The series in Eq(3.16 can be expressed in the form of a and FPII. The first point is trivial,
single integral, but this is not convenient for the calculation
of the RG functions. FPI: w,=g,=0; v,=0. (4.9
The RG functions in the one-loop approximation can be ) o . )
calculated from the renormalization consté®itl6) using the ~ 1he corresponding matrif) is diagonal with the diagonal

identity T)#:ﬁgﬁg‘F Budy, which follows from the defini- elements
tIOﬂS(3:1q and the fact thaZV.de.pend.s 0|.1Iy on the chfxrges Q=7 Q=7—¢. (4.5
g,u. Within our accuracy this identity is reduced @,

=—(e+ n)Dy— D, . From Eq.(3.16 it then follows: For the second point we obtain
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FPIl. w,=0, g,=(s—7n)a;, yi=e—n. (4.6
The corresponding matri® is triangular,dy: 8,,=0, and its

eigenvalues coincide with the diagonal elements:

Q=dwBw=n—7,=2n"¢,
, @7
szagrﬂgr:ag* =&€—mn.

We note that the expressions fgf in Eq. (4.6) and forQ),

in (4.7 are exact, i.e., they have no corrections of order

O(&?) [we takee = 7, so that here and belo@(&?) denotes
all the terms of the fornz 7, »?> and highet.

Now let us turn to the regime with— 0. In order to study
this limit we change to the new variabijg=g/u; the corre-
spondingg functions have the form

By=D,9" = By/u—0Bu/P=0'[ & +27,],

(4.8
Bu=ul—n+v,]

[the functiong,, is the same as in E43.109]. The one-loop
anomalous dimensio(8.17) takes the form
v,=ag"l(1+u). (4.9

From the expressiong.8) we find two fixed points, which
we denote FPIIl and FPIV. The first point is trivial,

FPII: u,=g,=0; v;=0. (4.10
The corresponding matri® is diagonal with the elements
Oi=—¢, Qy,=—7. (4.11
For the nontrivial point we obtain
FPIV: u,=0, g]=¢/2a; y*=el2. (412

The corresponding matriQ is triangular,dy.8,=0, and its
eigenvalues have the form

M=duBu=—nty,=(e=29)2,

) (4.13
QZZ agrrﬁguz 2ag* =é&.

The expressions foy* in Eq.(4.12 and forQ), in Eq. (4.13
are exact. Of course, the expressidas), (4.11), and y*
=0 for the trivial fixed points are also exact.

In the special case=27 the 8 functions (3.10H and
(3.100 become proportional, and the gdt1) reduces to a

N. V. ANTONOV
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FIG. 1. Regions of stability for the fixed points in the model
(2.10.

The vanishing of the elemeifl; reflects the existence of a
marginal direction in theg-u plane (along the line of the
fixed pointg and is therefore an exact fact. The coordinates
of a point on the ling4.14) can also be expressed explicitly
as functions of the dimensionless parameterg, /u3 using

the exact relatiorgolu8=g* /ui. The actual expansion pa-
rameter appears to béy rather thany itself, and the zeroth
order approximation has the form

2 —1/2 1/2
)3/P / )/'

9*:(77/3 ’ U*:(ﬂ/ap 92:27]- (416

In Fig. 1, we show the regions of stability for the fixed
points FPI-FPV in thes-» plane, i.e., the regions for which
the eigenvalues of th@ matrix are positive. The boundaries
of the regions are depicted by thick lines. We note that the
regions adjoin each other without overlaps or gaps. This fact
is exact for the ra=2#%>0, the boundary between the re-
gions of stability for the points FPIl and FPIMt the same
time, this ray is the region of stability for the point FP\Dn
the contrary, the boundaw~ , >0 for the point FPIl and
e=0,e>7 for FPIV are approximate, so that the gaps or
overlaps can appear in the two-loop approximation. The re-
gions denoted as FP&/and FPI\b with the boundary=2
both correspond to the same fixed point FPIV; the part

FPIVb represents the region in which the velocity field has

single equation. As a result, the corresponding nontriviaf€gative critical dimension; see Sec. VII. ,
fixed point, which we denote FPV, is degenerate: rather than  SUrPrisingly, Fig. 1 has some resemblance with the phase

a point, we have a line of fixed points in tigeu plane. It is
given by the relation

(4.14)

The exact expression foy; follows from the relation be-
tween the RG functions in E@3.10. The eigenvalues of the
matrix () (which is not diagonal hejehave the form

FPV: g,/u,(u,+1)=nla; yi=n=c¢l2.

0,=0, Q,=n(2+u,)/(1+u,). (4.19

diagrams presented in Refs,9], despite the essential dif-
ference between the moddis those papers, a strongly an-
isotropic velocity field has been studjedhdeed, the bound-
aries between the diffusive-type behavithomogenization
regime” in terminology of{ 7]) and convective-type regimes
(“superdiffusive behavior’} in the two models coincide
[however, in our case they are not exact and will be affected
by the O(e) corrections. Furthermore, the Kolmogorov
point (e=8/3, »=4/3) in our case and if7] lies on a bound-
ary between two nontrivial regimes. We also note that the
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boundary 2=¢ between the rapid-change and frozen re-(we recall thatu is the renormalization mass in the MS
gimes was anticipated on phenomenological grounds in Retchemg The relation between the bare and invariant charges
[37], see alsq38]; their arguments can be linked directly to has the form
the RG analysigsee below. . _ _ -

It is clear from the definition of the parameteys g” that 9o=K*""9Zy(g,u), Up=K"Z(Q,u), vo=7Z,(g,U),
the critical regime governed by the point FPII corresponds to (4.17
the rapid-change limit1.9) of our model, while the point see, e.g.[41,42,50. Equation(4.17) determines implicitly
FPIV corresponds to the limit of the frozen velocity field; seethe invariant variables as functions of the bare parameters; it
Eqg. (1.10. This shows that in the latter case, the temporalis valid because both sides of it satisfy the RG equation, and
fluctuations of the velocity field are asymptotically irrelevant because Eq4.17) atk= u coincides with(3.4) owing to the
in determining the inertial-range behavior of the scalar,normalization of the invariant variables.
which is then completely determined by the equal-time ve- Correlation time of the velocity field at the wave number
locity statistics. In the former case, spatial and temporal fluck is determined by the relatiot], *(k) = R(k) = ugrok?~ 7,
tuations are both relevant, but the effective correlation timesee Eqs(1.4) and (1.7). Correlation time of the free scalar
of the scalar field becomes so large under renormalizatiofield is given bytgl(k)z vok?, in the presence of advection
that the correlation time of the velocity can be completelyit is replaced by the exact expressibﬁ(k)zﬂk)kz. The
neglected. The inertial-range behavior of the scalar is deterelations (3.5 and (4.17 allow the bare parameters and
mined solely by thev=0 mode of the velocity field; this is renormalization constants to be eliminated from the ratio

the case of the rapid-change model. to(K)/t,(K); this gives
We then expect that all the critical dimensions at the point .
FPII [FPIV] depend on the only exponegtes—1e] that to(k)/t, (k) =u(k)=constk ™ 7" 7»., (4.18

survives in the limit in question, and coincide with the cor- o
responding dimensions obtained directly for the modelg) ~ The last relation in Eq4.18 holds fork— 0. It follows from
[(1.10] This is indeed the case; see E20 and (5.14  the RG equationDu=p5,(g,u), which reduces toDyu
below. =u[ — -+ v, ] near a fixed point; see E¢3.109. Equation

In the regimes governed by the trivial fixed points FPI and(4.18 discloses the precise physical meaning of the invariant

FPIII, the contribution of the convection dies out in the IR Variableu: the ratio of the velocity and scalar correlation

asymptotic region: the IR behavior has purely diffusive char{imes at the wave numbér Now we can complete the above
iscussion of the scaling regimes and relate it to the phenom-

acter, while the convection can be treated within ordinar)fj oaical ) in Refa7 33, F 418 i
perturbation theory. The existence of the two fixed points??lo Ogltiﬁ ?:cgurPhentfs gg/en 'mt Iigl ' % FFrfIJImtr(] ' 8)|'t i
the frozen and the rapid-change ones, implies that#ad oflows that for the fixed points ang | € velocity

) correlation timet, (k) becomes very small in comparison to
transport bysmallwave number&— 0 is governed by equal-

time (spatia) velocity statistics, while forp>0 transport by :ierg;)- dfg(r:ol:r_)elgte%n\?elf) irl] bf?el(élslr:%%a;g?ﬁ;ar\?’de F?Drlr\'}/ ethaet Oth?
small wave numbers is determined by the-0 mode, i.e., ty ) ' P

the time decorrelated component of the velocity field. prosite inequalityt, (k)>t,(k), holds for small momenta, the

there were IR singularities in the scalar correlations, the)}empora_ll fluptuatlons of the velocny_are frozen n, and its
correlation time can be replaced with(k) =«. [Using the

would be determined by the contributions of small momenta, . . .
y epresentation(4.18 and the exact expressions fof; in

and these two regimes would be really different. However, i .
the regions of stability of the trivial fixed points there are no £9S-(4.4) (4.6), (4.10, and(4.12), one can easily check that
such singularitiessee the discussion in Sec).IMoreover, U— for FPl and FPIl andi—0 for FPIIl and FPIV, in

in these regimes all momenkacontribute to the long-term, adreement with the analysis of t@ matrix] However,
large-scale transport properties of the scalar field recall these strong inequalities for the correlation times hold only

that for 7>0,e<0 and 7<0,s<17, the actual UV cutoffA asymptotically fork—0, gnq thgrgfore the exact corrglator
has to be introduced, see Sec. II, and the main contribution tbt-4 can be replaced with its limitel.9) or (1.10 only in
the perturbative diagrams then comes from the momenta df@lculation of a quantity dominated by smalmodes of the
orderk~A). The RG is not suitable for studying such\«  Velocity field. Finally, for the point FPV one hag = » and
divergent,” analytic in momenta and frequencies, quantitiesthe ratio(4.18 remains finite fok— 0; this is the case of the
Therefore, the splitting of the homogenization regime intolocal turnover exponent, studied [87]. _ _
the rapid-change and frozen parts is not meaningless, but not Let F be some multiplicatively renormalized quantig
practically useful. Probably for this reason it was not men-Parameter, a field or composite opergtdre., F=ZF ¢,
tioned in Refs[7-9]. In what follows, we shall focus our With certain renormalization constad . Then its critical
attention on the nontrivialanomalousregimes. dimension is given by the expression

The solution of the RG equations in conformity with the K o
stochastic hydrodynamics is discussed in Rp€-47 in A[F]=Ap=dr+A,de+ 7¢, (4.19

detail; see als32,33 for the case of the rapid-change mod- K © .
els. Below we restrict ourselves with the only information see, €.9.040-42,52. Hered anddg are the corresponding

we need. canonical dimensionsyf is the value of the anomalous di-

Any solution of the RG equatiof8.8) can be represented mensionyg(g)=D,, InZ at the fixed point in question, and
in terms of invariant variableg(k), u(k), and»(k), i.e.,the A, =2—1y73 is the critical dimension of frequency. For the
first integrals normalized &= u to g, u, andv, respectively  nontrivial fixed points we obtain
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Iy for FPII, operatorF is not in general equal to the simple sum of criti-

A —o_ /2 for EPIV (4.20 cal dimensions of the f|e_lds .and denvatlves_ entering H‘=1to.
© ' ' As a rule, the renormalization of composite operators in-

n=¢l2  for FPV volves mixing, i.e., an UV finite renormalized operator is a
. . : linear combination of unrenormalized operators, and vice

[we r_ecall th_aiZEs— 7, see(1.9)]. The critical dimensions of versa. P

the fields® in our model are also found exacily, The analysis of UV divergences is related to the analysis
Ay=1-v", Ay=—1 Ap=d+1 (4.21) of the corresponding canonical dimensions, cf. Sec. Ill. It

shows that the operatoF§ n,p] mix only with each other in
and for the IR scale we havk,,=1 [we recall that all these renormalization, with the multiplicative matrix renormaliza-
quantities in the modeR.4) are not renormalized and there- tion of the form(dropping the vector indices everywhgre
fore their anomalous dimensions vanish identicaly;
=0]. It is also not too difficult to show that the composite
operatord" in the model(2.4) is not renormalized and there- FIn,p1=Zn pirn prFred N’ p" 1. (5.2
fore its critical dimension is given simply by the relation
A[6"1=nA[ 0]; cf. [32] for the rapid-change case.

We note that the canonical dimensions of the figlds in HereF ., is the renormalized analog of the operafoandZ
our model(see Table)l differ from their counterparts in the is the matrix of renormalization constants. The correspond-
isotropic rapid-change modé&dee Table | in Refl32]). Asa  ing matrix of anomalous dimensions is defined as
result, the critical dimensiong}.20 and (4.21) at the point
FPIV differ from their analogs for the rapid-change model,
in spite of the fact that the anomalous dimensions are iden-
tical. In principle, the canonical dimensions in two models
can be made equal by an appropriate rescaling of the scalar
fields; we shall not dwell on this point here.

Let G(r)=(F.(x)F,(x')) be an equal-time two-point
quantity, for example, the pair correlation function of the
primary fields ® or some multiplicatively renormalizable
composite operators. The existence of a nontrivial IR stabl
fixed point implies that in the IR asymptotic regiowr>1
and any fixedmr the functionG(r) takes on the form

—_— 71 o
’)/[n’p][nr o1 Z[n,p][n”,p”]’DlLZ[n”rp”][n’ '] (53)

A simple analysis of the diagrams shows that the matrix

elementZ;, yjinr pr7 is proportional toh"™"', so that the el-
ements withn<n’ vanish (the parameteh=|h| appears
gnly in the numerators of the diagrams; see Seg. Mhe
elements witm=n" are independent df and therefore they
can be calculated directly in the isotropic model wiitk 0.
The blockZ;, pyin,pr7 Can be then diagonalized by the chang-
ing to irreducible operatorg¢scalars, vectors, and traceless
tensor$; but for our purposes it is sufficient to note that the

. " . . elementZ 1 vanish forp<p’ [the irreducible tensor
[(n,plln,p’]

with Fhe valugs Qf the crl_tlcal dlmenS|ops that. correqund 19 ¢ the rankp consists of the monomials with' <p only, and

the fixed point in question and certain scaling functién

whose exnlicit form is not determined by the RG e uationtherefore only these monomials can admix to the monomial
. P . . ) y > equatione o rankp in renormalizatiom Therefore, the renormal-
itself. The canonical dimensiord; , dg and the critical di-

. : ization matrix in Eq.(5.2) is triangular, and so is the matrix
mensionAg of the functionG(r) are equal to the sums of (5 3 The jsotropy is violated foh+0, so that the irreduc-
the corresponding dimensions of the quantifies

ible tensors with different numbers of the fieldscan mix
with each other even though their ranks are also different. In
V. CRITICAL DIMENSIONS OF THE COMPOSITE particular, the vectop;# admixes to the irreducible tensor
OPERATORS 36 ---96 3;09,0— 5 (3s0956)/d in the form of the traceless combina-
tion 26;;(hsdsf)/d—h;d;6—h;d;0. In the following, we
shall not be interested in the precise form of the basis opera-
tors, i.e., those having definite anomalous dimensions; we
F[n,p]zﬁila-“(}’i 6(3;609,6)', (5.2 shall rather be interested in the anomalous dimensions them-
. selves. The latter are given by the eigenvalyps,p] of the
wherep is the number of the free vector indices am¢tp ~ Matrix(5.3), and in our case they are completely determined
+2l is the total number of the fieldg entering into the DY the diagonal elements of the renormalization ma8ig):
operator; the vector indices of the symtigin,p] are omit-  y[n,p]=D,, In Z, 5jinp-
ted. Now let us turn to the one-loop calculation of the constant
Coincidence of the field arguments in Green functions(5.12) in the MS scheme. Ldi(x; #) be the generating func-
containing a composite operatér gives rise to additional tional of the 1-irreducible Green functions with one compos-
UV divergences. They are removed by a special renormalite operator=[n,p] from Eqg. (5.1 and any number of fields
ization procedure, described in detail, e.9.[46,46,51. The 6. Herex=(t,x) is the argument of the operator af(x) is
discussion of the renormalization of composite operators ithe functional argument, the “classical analog” of the ran-
turbulence models can be found[#1,42; see also Ref32]  dom field . We are interested in th@" term of the expan-
for the case of Kraichnan’s model. Owing to the renormal-sion of I'(x; #) in 6(x), which we denotd’,(x; 6); it has the
ization, the critical dimensioA[ F] associated with certain form

G(r)=v2A%S(Ar)~deg(mr), (4.22

In the following, an important role will be played by the
composite operators of the form
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1
Fn(x;6)=mJ dxq f dx,0(Xq) -+ 6(Xp)

X(F[N,p](X) 8(X1) == 0(Xp))1—ir - (5.4)
In the one-loop approximation the functidb.4) is repre-
sented diagramatically in the following manner:

1
Ln=Fln,p]+ 3 A

The first term is the “tree” approximation, and the black
circle with two attached lines in the diagram denotes th
variational derivatives’F[n,p]/86486. In the momentum
representation it has the form

(5.9

8%F[n,p]
06(k)60(q)

—p(p— D)k qi,(di,0-..9; 6)(;67; 0)'

T(k,q)=

—4plki qs(d;,0...0; 0)350(3; 00, 9)' 1

—21(k-a)(3;,0...9; 0)(3; 69, 6)' 1

—41(1=1)kjas(3;0956) (91, 6....; 6)(3; 00, )2,
(5.6
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(d+ 1)5p|5ij - 5pi5|j - 5pj5|i
d(d+2)

f daf(a)qiq;Ppi(a)=

><f daf(q)g?.

This gives

2ud(d+2)

- gu’d (5.9

with the integrald from Eq. (3.12.

e Substituting Egs(5.6) and (5.9) into Eq. (5.7) gives the
desired expression for the divergent part of the diagram
(5.5). In this expression we have to take into account all the
terms proportional to the operatbf n,p] and neglect all the
other terms, namely, the terms containing the factor§; 95‘

etc. The latter determine nondiagonal elements of the matrix
(5.2), which we are not interested in here. Finally we obtain

gu®IQLn,p]
I'y=F[n,p] 1—m ceey (5.10
where we have written
Q[n,p]=2p(p—1)—(d=1)(n—p)(d+n+p). (5.11

The dots in Eq.(5.10 stand for theO(g?) terms and the
tructures different fronfr[n,p], = denotes the equality up

Strictly speaking, we had to symmetrize the right-hand sid

of Eq. (5.6) with respect to the indiceis,...,i, and the mo- i .

mentak,q. However, the symmetry is restored automatically The constaniZyy pyn,p) 1S ;‘nounqlfrom the requirement

after the vertexT(k,q) has been inserted into the diagram, that the renormalized analldtL =Z{n,p1,in,p)l n OF the func-

which is why only one term of each type is displayed in Eq.tion (5.10 be UV finite (mind the minus sign in the expo-

(5.6) and the required symmetry coefficients are introduced®n?; along with the representatid8.13 for the integral]
The vertex(5.6) contains a—2) factors ofdd. Two re- and the MS scheme this gives the following result:

o the UV finite parts; we also recall that=p+2l.

maining “tails” 6 are attached to the vertic@s(va) 6 of the
diagram(5.5). It follows from the explicit form of the verti-
ces that these two field8 are isolated from the diagram in
the form of the overall factow6sg; cf. Sec. Ill. In other

[

, _, a9 Qnp] (Zu?
[n.pInpI™ =7 "y 2(d—1)(d+2) &h e+s7’
(5.12)

words, two external momenta, corresponding to these fields
6, occur as an overall factor in the diagram, and the UVwith the polynomialQ[n,p] from Eg. (5.11) and the con-
divergence of the latter is logarithmic rather than quadraticstanta is given in Eq.(3.15.

cf. the expressiof2.10),(3.11). Therefore, we can set all the
external momenta and the “massh equal to zero in the

integrand; the IR regularization is provided by the cut-off of

the integral atq=m. Then the UV divergent part of the
one-loop diagrant5.5) can be written in the form

Ppi(9)Dy(w,q)

2 2. F -
o+ q4

(5.7

dw dq
ap0a|6JEfWT(q,—q)

The expressioli5.7) is a linear combination of the integrals

dw
Tijp1= J 27

We perform the integration oves and make use of the isot-
ropy, namely,

dg diq;Pp(a)Dy(w,q)
(2m?  o*+vg’

(5.9

For the anomalous dimensid@h.3) we then obtain:

~ agQnpl
AN PI= T Dd-1d+2)

(5.13

cf. Sec. Il for the dimensiony,. The critical dimension
associated with the operat®&{n,p] has the formA[n,p]
=y*[n,p]; see Eq(4.19 and Table | ¢* denotes the value
of vy at the fixed point in questignFor the nontrivial fixed
points discussed in Sec. IV we then obtain

{=e—n for FPII,
Afnp]e —— 2P el2 for FPIV,
2(d—1)(d+2)
n=¢l2  for FPV
(5.14

with the corrections of orde®(&?).
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The expression(5.14) illustrates the general fact that A[n,p] at the crossover line=27 as a function of the ex-
the critical dimensions in the rapid-change and frozen reponentse, 7.
gimes depend only on the exponetitande, respectively. It The first-order resul{5.14) for the operato~[2,0] (the
turns out that the dimensioA[n,p] at the point FPV is local dissipation rateis in fact exact. The proof is based on
universal, i.e., it is independent of the free paramateror,  certain Schwinger equation; it is almost identical to the
equivalently, of the specific choice of a fixed point on theanalogous proof for the Kraichnan model, giveri32], and
curve described by Ed4.14). This is a consequence of the will not be discussed here.
explicit form of the RG functions in the one-loop approxi- The above analysis applies also to the case of a nonsole-
mation (the same combinatiog/u(u+1) enters into the noidal velocity field (compressible fluid The transversal
beta functions and the anomalous dimension of the operatg@rojector in Eq. (1.3 is then replaced withPj;(k)
F[n,p]). We then expect that the exact dimensidm,p] at ~ +«Q;;(k), whereQ;;(k)=kik; /K? is the longitudinal pro-
the point FPV is nonuniversal, and the dependencaipn jector anda>0 is an additional arbitrary parameter, the de-
will appear at the two-loop level. Another artifact of the gree of compressibility. For the rapid-change regithe),
one-loop approximation is the continuity of the dimensionthe dimensiom[n,p] takes on the form

A L (n—p)(d+n+p)+p(p—1)(a—1)+a(n—p)(n+p—2)
[n.p1= a2 2 (d—1+a)

+0(¢?), (5.15

in agreement with the=0 results obtained in Reff31] for = asymptotic behavior fom— 0 is found from the correspond-
the “tracer” model and earlier in Refl25] for d=1. In  ing RG equations and has the forf ,)><m*«. From the
general case(1.7), additional superficial UV divergence operator product expansidi6.l) we therefore find the fol-
emerges in the 1-irreducible Green functigti6v), ;,, and  lowing expression for the scaling functigitmr) in the rep-
the second independent renormalization constant should resentatior(4.22) for the correlatok F,(X)F,(x")):
introduced as a coefficient in front of the new counterterm

0'(vd) 6. This case requires special analysis and will be dis- _ A,

cussed elsewhei@ particular, the nontrivial fixed point be- am”‘; Ao(mn)Ze,

comes infinite for the purely potential frozen velocity field,

cf. [48,49 for the random walks in random environmgnt ~ Where the coefficients,,= A, (mr) are regular in r)2.

In the models of critical phenomena, the leading contri-
bution to the representations liK6.2) is related to the sim-
plest operatorF=1 with the minimal dimensiom =0,
while the other operators determine only the corrections that
vanish formr—0. The feature characteristic of the turbu-

The representatiot¥.22) for any scaling functioré(mr) lence models is the existence of the so-called “dangerous”
describes the behavior of the Green functionfor>1 and composite operators with negative critical dimensions
any fixed value ofmr. The inertial-convective range corre- [32,33,39-42 Their contributions to the operator product
sponds to the additional condition thatr<1. The form of  expansions determine the IR behavior of the scaling func-
the function&(mr) is not determined by the RG equations tions and lead to their singular dependence norfor mr
themselves; in the theory of critical phenomena, its behavior— 0.
for mr—0 is studied using the well-known Wilson operator  If the spectrum of the dimensions, for a given scaling
product expansiofOPB); see, e.9.[45,46,5]. This tech- function is bounded from below, the leading term of its be-
nique is also applicable to the theory of turbulence; sedavior formr—0 is simply given by the minimal dimension.
[32,33,39-42 This is the case of the rapid-change mog@ele[32,33)), and,

According to the OPE, the equal-time productas we shall see below, of our modgl4). [The exception is
Fi(X)F,(x') of two renormalized operators ak=(x  provided by the nonrapid-changes regimes, if the values of
+x')/2=const and=x—x"—0 has the representation the exponentg,  are large enough. It is discussed in the

subsequent sectign.
Consider for definiteness the equal-time structure func-
Fl(X)FZ(XI):g Ca(NF4(Xt), (6.)  tions of the scalar field:

_ _ n _ Sa(n)=([o(t,x)—6(t,x")]", r=[x=x'|. (6.3
where the function€ , are the Wilson coefficients regular in
m? and F,, are all possible renormalized local composite For the functiong6.3), the representation of the fortd.22)
operators allowed by symmetry, with definite critical dimen-is valid with the dimensiongdg=0 and dg=Ag=nA,
sionsA . The renormalized correlat¢F ;(x)F,(x')) isob- ~ =—n. In general, the operators entering into the operator
tained by averaging Ed6.1) with the weight expS,,,, the  product expansions are those which appear in the corre-
quantities (F,) appear on the right-hand side. Their sponding Taylor expansions, and also all possible operators

(6.2

VI. OPERATOR PRODUCT EXPANSION AND THE
ANOMALOUS SCALING FOR THE STRUCTURE
FUNCTIONS AND OTHER CORRELATORS
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that admix to them in renormalization. The leading term ofapproach, and to the ord€(¢?) in [32] within the frame-
the Taylor expansion for the functia®.3) is given by the  work of the RG. We also note that the anomalous dimensions
nth rank tensoF[n,n] from Eq.(5.1). The decomposition of associated with the operatoFy 2k,2] were calculated in
F[n,n] in irreducible tensors gives rise to the dimensions[32] to the orderO(¢?); the exact dimension of the operator
A[n,p] with all possible values gb; the admixture of junior F[2,2] was found in[14]. [It should be noted that the de-
operators gives rise to all the dimensioA$k,p] with k  composition of the total exponent in E®.5) into the critical
<n. Therefore, the asymptotic expression for the structur@imension of the composite operator and the critical dimen-
function has the form sion of the structure function itself differs from the analo-
gous decomposition for Kraichnan’s model, as a result of the
nooX difference in canonical dimensions; see Sed. llI
Sw(f)z(hf)”kzo z [Cip(mn)AlPl+ 1. (6.4 The result(6.5) for the third-order structure function in
=0 p=py the rapid-change model coincides with t@€{) result ob-
tained in[28] within the zero-mode technique; see also the
earlier papef18] for the three-dimensional result. We note
are some numerical coefficients dependentop d, and on  that the exponents-7¢/5 and /5 from [18] should be
the angle between the vectdisandr. identified with _the anomalous dlmen5|ons[3,1] an.d
Some remarks are now in order. The dots in B4  A[3.3], respectively. The result6.5) for n=3 is also in
stand for the contributions of the ordem¢)2*°®) and agreement with thé©(1/d) result obtained if19], with the
higher, which arise from the senior operators, for exampleldentificationy+1-A=3+A[3,1]. _
426426 or v2. In the original Kraichnan model, only scalar For the case of the frozen velocity fled_ElPIV), the first-
operators give contributions to the representations (4), _order results for the even structure functions were prese_r_lted
because the mean valuég,) of all the other irreducible " [32]. We also note that they satisfy the exact inequalities
obtained for the time-independent casd 38).

tensors vanish owing to the isotropy; sg22,33. In the o X :
model(2.4), the traceless irreducible tensors acquire nonzero 1 N€ analysis given above is extended directly to the case

mean values, and their dimensions appear on the right—harﬂf other_correlation functions. I_:or exqmple, the_analog qf the
side of Eq.(6.4). In particular, the mean value of the operator €XPression(6.5) for the equal-time pair correlation function
3;09;0— 6;;(ds0050)/d is proportional to the traceless tensor of the operator¢s.1) has the form
of the form &;;(hshg)/d—h;ih;, its tensor indices are con- -~ _Afnol—An! o
tracted with the indices of the corresponding coefficiént (F[n,p]F[n’,p'])=h"""(Ar)~alnPI=alnp]
in Eq. (6.1). ) )

Tﬂe operatorsF[k,p] with k>n (whose contributions X(mp)AnenPren, (6.6
would be more importantdo not appear in Eq6.4), be-
cause they do not appear in the Taylor expansion of th

function S, and do not admix in renormalization to the terms Another int " le is th i .
of the Taylor expansion. nother interesting example is the equal-time pair cor-

The leading term of the expressidf.4) for mr—0 is  'elator (8"(t.x) 6(t,x")). Substitting the relationslg=0
obviously given by the contribution with the minimal pos- @1d dg=A¢=—(n+k) into the general expressia.22)
sible dimension. The straightforward analysis of the explicitdives (6"0%)=r""%¢(mr), and the smalimr behavior of

one-loop expressiori5.14 shows that for fixedn, any d the scaling functiong(mr)_ is found from Eq.(6.2) (here
=2, and any nontrivial fixed point, the dimensiaqn,p] and below, we do not display the obvious dependence on

decreases monotonically withand reaches its minimum for - In contrast to the previous example, composite operators
the minimal possible value gi=p,,, i.e.,p=0 if nis even N the expansion(6.1) can involve the fieldd without de-

n» ) . . . . . .
and p=1 if n is odd. Furthermore, this minimal value "vatives The leading term in Eq(6.2 is then given

H n+k : _ H
A[n,p,] decreases monotonically asncreases, i.e., simply by the operatorg”™* with Ag=—(n+k), while
the first correction is related to the monomial

A[2k,0]>A[2k+1,1]>A[2k+2,0]. (000, 0)9““(‘2 whose critical dimension is easily found
to be Ap=—(n+k)+A, with A, from Eq. (4.20. There-
[A similar hierarchy has been established recently in Reffore, in the inertial range our correlator has the form
[53] for the magnetic field advected passively by the rapid{ 6"¢*)=c,m™ "W —c,m"*®(mr)2o+ ..., alarge con-
change velocity in the presence of large-scale anisotfopystant minus a powerlike correctidthe signs of the constants
Therefore, the desired leading term for the evedd) struc-  C; are explained by the fact that the correlator is positive and
ture functionS, is determined by the scalérectoy compos- ~ decreases asgrows. In the structure function.3) all the

Here and belowp, denotes the minimal possible value f
for givenk, i.e., p,=0 for k even andp,=1 for k odd; Cy,,

Some special cases of the relati@®) for the rapid-change
model were obtained earlier in Refd4-17, [32].

ite operator consisting af factorsdd and has the form contributions related to operators containing fields without
derivatives cancel out to give the behaviérd), determined
S, (r)oc(hr)"(mr)Anpal (6.5 by the operators constructed only of field derivatives.
Finally, we note that the hierarchy of critical dimensions
with the dimensiom\[n,p] given in Eq.(5.14). A[n,p], established in Sec. V, persists also for the nonsole-

For the rapid-change fixed point and even values,dhe  noidal velocity field, seg5.15. Therefore, the asymptotic
total power ofr in Eq. (6.5 coincides with the exponent in expressions likg6.4), (6.5, and (6.6) remain valid for the
the original isotropic Kraichnan model, calculated to the or-compressible cas@ tracer in terminology of31]) with the
der O(¢) in [17] and O(1/d) in [15] within the zero-mode exponentsA[n,p] given in(5.15).
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VIl. SUMMATION OF THE DANGEROUS let us turn to the case of the frozen velocity field. We sub-
CONTRIBUTIONS FROM THE POWERS OF THE stitute the correlatof1.10 into Eq. (7.3 and perform the
VELOCITY FIELD integration overw; this gives:

Another interesting problem emerges as the parameters
and » increase and the velocity field becomes dangerous; see gl 2J' 1—exn(ik-r
Eq. (4.21). Owing to the Gaussianity, all its powers also 9% | (2 a[ Hik-n]
become dangerous with the dimensiorz‘s[vilmvin]

=nA,. The analysis of the diagrams shows that in the rapid-
change regime, these operators do not contribute to the op-
erator product expansions of the equal-time correlators like
(6.3) or (6.6), but all the contributions of the scalarg]" do A brief digression is required here. We are interested in
appear in those OPE for the non-rapid-change regimes. ThHée smallmr behavior of the scaling functiog(mr) from
spectrum of their dimensions is unbounded from below, andeg. (6.2), so that we have to combine the expressiér)
in order to find the smalinr behavior we have to sum up all with the representatiot4.22 for the functionS,. In renor-
their contributionsoc(mr)"[] in the representatiori6.2).  malized variables, the latter is written in the for®,
We have employed the infrared perturbation theory in the=(hr)?f(ur,g”,u,mr), wheref is some function of com-
form developed if39,4Q to perform the required summa- pletely dimensionless arguments. The funcié@mr) is then
tion for the structure functiors, in the frozen regime and given by the relationé(mr)=f(1,g,,0mr) with g, from
within the one-loop approximation for the Wilson coeffi- Eq.(4.12 (we recall that for the frozen regime, =0). The
cients. In this case, the velocity becomes dangerous: for renormalization of Eq(7.4) in our approximation reduces to
>2 (region FPI\b on Fig. 1. the replacemengy—g”u®, vo— v, and the changeover to
The functionS, is represented in the form the scaling function is given by the substitutigri—g” ,
pu—1/r. From now on, all these substitutions are implied.
Sz:f D[ 4(t,x) — O(t,x") ]2 expS(P) (7.1)  The expansion of the denominator in Hg.4) in (v<-k)?
gives

P(k)(k2+m )—d/2+1—s/2
(V- k)2+VO

(7.9

with the action functional from Eq2.4). Following[39,40, .
we split the velocity field in Eq(7.1) into two components, 1 1 S (—1) (Vo -k)2" -
V(x)=v_(x)+V=(x), referring to the “soft” component, VoK) 2K~ A (=" (7.9
v_, all the Fourier modes witkk<k, , and to the “hard”

compon_ent,v> ! 6.‘" the remaining modes W'_th> k’.‘ - Here It follows from Egs.(1.10 and(7.2) that the correlators of
k, is a fixed arbitrary separating scale, which will not entery o <oft field have the form

into the final expressions. Since we are interested in only the

contributions of the operators/{)" into the OPE, we can

neglect the spacetime inhomogeneity of the soft field. It then ((Viy (Viy ) =D (81,851, iy i,

becomes a random variablether than a random fielavith
the statistics determined by the relation

(Ve V) =(V(X) -+ V(X)) (7.2
where

Furthermore, we confine ourselves to the one-loop approxi-
mation for the corresponding Wilson coefficients, so that we
can omit the contribution of the hard field in the vertex
0'(vd) 6. Then the integration over the fields ¢', andv-. in

+all posssible permutations
(7.6)

dk
D:rsVZJ' (277) (k2+m2)7d/2+17£/2: VZmZ(mr)fs

Eq. (7.1 gives: (7.7
S,= f (here and below= denotes the equality up to a numeric
(277) facton. Strictly speaking, the integrd?.7) should be cut off

from above ak~k, . Fore>1, the cut-off can be removed
P(k)Dy(w,k) (7.3 without changing the singularity at— 0. The averaging Eq.

X[1—exp(ik- ’ '
[1—expi r)](w—v<~k)2+v§k4 (7.5 overv_ gives

where P(k)=h;h;P;;(k), the correlatoD, is given by Eq. %
(1.7), and the averaging over. with the statisticg7.2) is to E
be performed. The mean valugs?) in Eq. (7.3 correspond n=0
to the contributions frondv(x) - - -v(x)) in the representation (7.8
(6.2 for S,. For the rapid-change model, the correldiqris

independent of the frequency; see Ef.9). It then follows  [we note that (8)!/2"n! =(2n—1)!! is thenumber of terms
from the expressiori7.3) that the dependence on. van- in Eq. (7.6)]. The smallmr limit implies z—c. The largez
ishes after the integration over, which means that the op- behavior of the series in E¢7.8) is found from the follow-
erators ¢%)" give no contribution to the OPE fd8,. Now ing integral representation:

2n)' D m2(mr) 2
(=2)" z= =
2k v? k?
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o singular dependence anr of the equal-time correlators for
(—z)”=f dtexp(—zt>—t) the stochastic NS equation can be relatethfmite families
0 of dangerous operators. The summation can also be per-
I ey formed in a more formal way, without referring to the infra-
B W/4Z[1+O(1/\/E)]' 7.9 red perturbation theory, by using only the operator product
Substituting Eq(7.9) into Eq. (7.4) gives expansion for the quantityd(t,x) — 6(t,x’)]* and not only
its averagg(7.1). It is also possible to take into account all

. o _ the composite operators constructed of the velocity and its
S=m"“(mr) dy[1—expiy-mr)] time derivatives; sef54].

(2n)!
n!

4]
>
n=0

><P(y)y_3(l+y2)_d/2+l_5/2, (71@
VIIl. CONCLUSION
where we have changed to the dimensionless integration

variabley defined so thak=my. Expansion of the quantity ~ We have applied the RG and OPE methods to the simple
in the square brackets for smatir gives model describing the advection of a passive scalar by the

synthetic velocity field and in the presence of an imposed

o 3 o 241/ linear mean gradient. The statistics of the velocity is Gauss-
Sy=(mn)~“riry | dyP(y)yiyjy “(1+y7) ian, with a given self-similar correlator with finite correlation
(7.1 time.

We have shown that the model possesses the RG symme-
[the first term of the expansion gives no contribution to Eq.ry, and the corresponding RG equations have several fixed
(7.11), owing to the evenness of the rest of the integland points. As a result, the correlation functions of the scalar
The vector indices can be isolated from the integrall);  field in the inertial-convective range exhibit various types of
this gives rise to the two structurej;h? andh;h;, with the  scaling behavior: diffusive-type regimes for which the ad-
scalar coefficients proportional to the integritlyy *(1  vection can be treated within the ordinary perturbation
+y?)~92+17¢/2 One can easily check that fer- »>1,itis  theory, and three nontrivial convection-type regimes for
both IR and UV convergent, so that the leading terms of thevhich the correlation functions of the model reveal anoma-
small mr behavior of the integral7.10 are indeed obtained |ous scaling behavior. The stability of the fixed poifasid,
simply by the expansion of the integrand and have the formherefore, the choice of the scaling regintepends on the

h2r2(mr) ¢ and (-r)?(mr) ~*". values of the two exponentsand 7, entering into the veloc-
Therefore, it turns out that the contributions of the opera-ty correlator.
tors (v2)" sum up to the powerlike expressiof{mr) 2. In The explicit asymptotic expressions for the structure func-

other words, the infinite sum of these dangerous operatorgons and other correlation functions in any space dimension
gives to the functiors, contribution of the same form as the are obtained; the anomalous exponents are calculated to the
single operatoF[2,0], and therefore the IR behavior 8§ is  first order of the corresponding expansions. For the first
given by the same expressioB.5) for all values of the ex- nontrivial regime the anomalous exponents are the same as
ponente [of course, the corresponding amplitudes £o¢ 2 in the rapid-change version of the model; for the second they
acquire an additional contribution from the operator$) {]. are the same as in the model with time-independtazen

The infinite family of the dangerous operator€)" also  velocity field. In these regimes, the anomalous exponents are
occurs in the RG approach to the stochastic NS equation; semiversal in the sense that they depend only on the exponents
[39-42. In that case, their summation in the OPE for entering into the velocity correlator; what is more, they de-
different-time correlators leads to the expressions that arpend on the only exponefd=s— 7 ande) remaining in the
analogous t¢47] and describe the well-known sweeping ef- corresponding limit. For the last regime the exponents are
fects. The contributions of these operators vanish when oneonuniversal: in principle, they depend also on the values of
changes to the equal-time Galilean invariant functions, fothe coupling constants. It turns out, however, that they can
example, the structure functions of the velocity field. In thisreveal the nonuniversality only in the second order of ¢he
connection, it should be stressed that the appearance of tlexpansion.
operators ¥%)" in the structure functions of the mod.4) A serious question is that of the validity of tleexpan-
is not an artifact of the synthetic velocity statistics. One carsion and the possibility of the extrapolation of the results,
check that in the presence of a mean gradient, the same effeabtained within thes expansions, to the finite values=0(1).
occurs even though the velocity is generated by the Galileam Refs.[22] and[28], the agreement between the nonpertur-
covariant stochastic NS equation. On the contrary, if the efbative results and the expansion has been established on
fective scalar noise in the diffusion equation is proportionalthe example of the triple correlation function in the rapid-
to the delta function in timegas in original Kraichnan’s change model. In particular, {128] the exponenA\[3,1] (we
mode), the operators\?)" are absent from the equal-time use the notation introduced in Sec) Was been calculated
correlators whatever be the velocity statistics. One can probaumerically for all G={<2 within the zero-mode approach.
ably consider this effect as an additional source of the breakit was shown that for smalf, this nonperturbative result
down of the Kolmogorov-Obukhov theory for the passiveagrees with the expansion i) while for (=2 it coincides
scalar advection. with the exact analytic resulA[3,1]=—2 obtained previ-

The summation given above can be viewed as a possibleusly in[20]. In the papef25], the one-dimensional version
model of the origin of the anomalous scaling in the structureof the rapid-change model has been studied both numerically
functions of the velocity field: it was argued [iB0] that the  and analytically within the zero-mode approach; the analytic
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expressions for the anomalous exponents obtained within thie ¢ have finite radii of convergence. In the language of the
e expansion have also been found to agree with the nonpefield theory, this is related to the fact that in the rapid-change
turbative numerical results. Finally, in R¢R29] the analytic  models, there is no factorial growth of the number of dia-
O(&) result has been confirmed by the numerical experimengrams in higher orders of the perturbation theory: a great
on the example of the fourth-order structure function in threedeal of diagrams vanishes owing to retardation and the fact
dimensions. that the velocity correlator contains the delta function in
In this connection, we also note that a number of exactime. This is no longer so for the regimes in which the cor-
analytic results appear to be in agreement with the correrelation time remains finite, and we expect that the series in
spondinge expansions: the exponenf 2,2], calculated ex- & for these regimes are only asymptotical, as in most models
actly in [14], the exponent for the second-order structureof the critical behavior.
function of a passively advected magnetic fig2d], and the Let us conclude with a brief discussion of the passive
second-order exponent for a scalar advected by the nonsoladvection in the non-Gaussian velocity field governed by the
noidal (“compressible”) velocity field[33]; the correspond- nonlinear stochastic NS equation. In this case, one has to add
ing expansions i’ (to the order??) have been calculated the nonlinear termy(;d;)v; to the left-hand side of the equa-
within the RG approach if32,33. These facts support tion (1.2) and sety=0 in Eqg.(1.4). The RG approach is also
strongly the applicability of the expansion, at least for low- applicable to this model; the analysis of the UV divergences
order correlation functions. shows that the basic RG functions are the same as for the
In the paper[11], a closure-type approximation for the model with h=0. The RG analysis of the latter has been
rapid-change model, the so-called linear ansatz, was used &zcomplished irf55]. It shows that the model possesses a
derive simple explicit expression for the anomalous exponontrivial IR stable fixed point; its coordinate has been cal-
nents for any &¢<2, d, andn, the order of the structure culated in[55] in the first order of thes expansion.(The
function. For{=1, the predictions of the linear ansatz appearresults obtained if55] were also rederived later in Refs.
to be consistent with the numerical simulations[56].) The inclusion of a nonzero mean gradiént0 gives
[12,23,29,30 they are also in agreement with some exactrise to anomalous scaling; the analysis given in Sec. VI can
relations[13,21,23. However, they do not agree with the also be extended to this case. For smalithe anomalous
results obtained within the zero-mode and RG approaches iexponents are given by the relati¢f.13, in which one
the ranges of smalf, 2—¢ or 1. In fact, there is ndormal  should takeg/u(u+1)=¢/3a at the fixed point, with the
contradiction between the perturbative results and the linearoefficienta from Eq.(3.15 (we use the notation introduced
ansatz: the violation of the latter in the aforementioned limitsabove; the definition of the parametessa, andu in [55] is
can be related to the fact that they have strongly nonlocaslightly differend. Despite the non-Gaussianity, the critical
dynamics in the momentum space; see, e.g., the discussiondimensions of the powers of the velocity field are given by
Refs.[13,29. On the other hand, theumericaldivergence the simple linear relatiom[v; ...v; J=nA,=n(1-e/3);

of the predictions given by the linear ansatz anekpansion see[39-42,57 (in the notation of the paper39-44, &

for the fourth-order structure function @t=1 is, roughly  should be replaced withe2. Therefore, all these operators
speaking, of the same order of magnitude as the differencgre dangerous far>3, and the summation of their contribu-
between the nonperturbative numerical results and the petions is required. For the different-time correlators, it has
turbative small¢ results for the triple correlator, as one can peen accomplished if89,4Q; for the structure functions it
see from the figures presented #2]. One can think that the ' can be performed in the one-loop approximation as in Sec.
series ing, obtained within the RG or zero-mode approachesy|| above and leads to an analogous conclusion: the behav-
give correct formal expansions of tifenknown exact ex-  jor of the second-order structure function does not change for
ponents, while the linear ansatz gives a good approximatg>3. For ¢>4, the composite operator of the local energy
expression for the same quantities néarl. We also note djssipation rate also becomes danger&, possibly along
that the numerical agreement between the expansigraiid  ith all of its powers[57]; some other dangerous operators
the exact results is expected to worsennasicreases, be- arise fore>6 and further{54,58. The identification of all
cause the actual expansion parametengsrather than{  the other dangerous operators and summation of their contri-

itself; see[32,33. _ _ butions in the operator product expansions remains an open
Of course, it is not impossible that new dangerous operaproblem.

tors arise for some finite value of the RG expansion param-

eter. T_he example is provided by t_he_frozen_ regime of the ACKNOWLEDGMENTS
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